
806 L.M.Zubov 

follows from (2), (12) and the integration by parts formula. Let points of an elastic 
solid receive a small additional displacement w i under the effect of the additional 
forces kl and f,’ , 
ka, \a’ . 

and the displacement Ws under the effect of the system of forces 
A theorem on reciprocity of work of the additional forces on the additional 

displacements follows from (2). (9) 

jjj pklewsdz + jj flJewsdO = j j pk,sw,dz+ jj &w,dO @) 
VU 0 0 0 

The author is grateful to A. I. Lur’e for his attention to this research. 
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The general solution is obtained of the equilibrium equations in displacements 

for inhomogeneous isotropic media, whose elastic characteristics are different- 

iable functions of the Cartesian coordinates. It is shown that the components of 

the displacement vector in the three-dimensional problem of elasticity theory 
can always be expressed in terms of two functions which satisfy second and 
fourth order linear partial differential equations, respectively. 

Of the earlier research devoted to analogous problems, the paper [l] should 
first be noted in which an equation is derived for the Airy stress function in the 
two-dimensional problem of the theory of elasticity of an inhomogeneous medium. 
A general solution of the equilibrium equations in displacements is obtained in 
lJ2. 31 for the case of axisymmetric deformation of bodies of revolution whose 
elastic moduli vary exponentially as a function of the coordinate 2. A power- 
law change in the elastic modulus was investigated in [4] with primary attention 
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paid to the plane problem. General solutions of the equilibrium equations in 
displacements for the three-dimensional case and an arbitrary law of variation 

of the elastic characteristics of an inhomogeneous medium has apparently not 
been examined. 

1. Let us consider the shear modulus Cr of an inhomogeneous medium and the Poisson 
ratio V to be differentiable functions of the Cartesian coordinate 2. The equilibrium 

equations in displacements in the absence of mass forces have the form 

Here u~t uV, u, are components of the displacement vector, 6 is the relative volume 
deformation. Let us differentiate the first equation of the system (1.1) with respect to 

y, and the second with respect to z and let us subtract. We hence find that 

&s,A3y - au,lax = 'Y, (f.2) 
X (5, y, z) is an arbitrary function satisfying the equation 

(1.3) 

Here u,+, UU+ is a particular solution of the inhomogeneous equation (1.2), and 

u, 9 o us is the general solution of its corresponding homogeneous equation, It foll- 

ows from the homogeneous equation that there exists a function F (2, 3, z) such that 
lCxC =. ap/ax, u!,’ =. #lay (1.4) 

To seek the particular solution, let us introduce a new function N (5, y, z), by ass - 
uming 

x ‘=: a*Nlax" + d*Nldy* (1.5) 

Substituting this expression into (1.2) we obtain that the particular solution can be 
taken in the form 

L1 + = amide, x u”+ = - aivlaz (1.G) 
Therefore, the displacements U, and u,, can be expressed in terms of two auxiliary 
functions F and 1\; in the most general case. Substituting the general solution of the 

inhomogeneous equation (1.2) in conformity with (1.4), (1.6). into (1. l), we obtain 
a system of three differential equations for F, _I- and I(, : 

dQ,tax i- aQ2iay = 0, aqliay - ay,iaz = 0 (1.7) 
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It follows from the first two equations of the system (1.7) that the functions ()I and 
Qs are interrelated by the Cauchy-Rlemann conditions, and can hence be represented 

as 
(1.d) 

where 0 (5, y, z) is an arbitrary harmonic function satisfying the two-dimensional 
laplace equation (the variable z plays the part of a parameter). The system of differ- 

ential equations (1.7) hence decomposes into two independent subsystems, one of which 
determines the functions F and II, 

$&[(1 -v)(-:*--$) F+Y %]+-&[G(g+u,)] = ; 

(I.!,) 

and the other, the function iV 

(1.10) 

This last equation evidently does not contradict conditions (1.5) and (1.3). 
Now, let us show that the harmonic function w (r, y, z) can be taken equal to zero 

without limiting the generality. Let F+, u.,+ and N+ denote particular solutions of the 

inhomogeneous differential equations (1.9) and (1.10). and F”, 2~: and No the general 
solutions of their corresponding homogeneous equations. By direct substitution it can be 

seen that 

F’ = 1 $ 1 ‘$. &, u,+ = 0; :Vf = 1 ‘+ 5 $. & (1.11) 

can be taken as the particular solution of the system (1.9) and of (1.10). 
Utilizing (1.11). we have 

n, = aF”la~ + aWjay, uy = aF”lay - aN”lax (1.12) 

Moreover, it follows from the condition Uzc = 0 that U, = uzO. Therefore, the dis - 

placements U,, U,, U, depend only on the functions F”, uzo and .v” which are 

solutions of the system (1.9) and of (1.10) if we put W = 0 therein. Therefore, the 
fumtion w cannot exert any influence on the components of the displacement vector, 

and it can be discarded without loss of generality. Let us put w = 0 in (1.9) and (1.10). 

We then obtain a second order equation for 11 

aiv 
‘T2N + q(z) x = 0 (1.13) 

which goes over into the three-dimensional Laplace equation in the case of a homoge- 
neous medium. We obtain a homogeneous system of differential equations for I’ and 

U, which after introducing the new unknowns 
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becomes 

Let us now introduce the auxiliary function t (z, Y, a) by -assuming 

(I .16) 

.=-&(%GLa;. L 
) 

Substituting these expressions into the first two equations of the system (1.15). we will 
see that they are satisfied for any selection of the function L. Substitution into the third 

equation yields 

uz= _ - ; (v2-qaL a 1 
a:2 & + z 2G ,vV2L r ( a'L _-J (1.17) 

There remains to select the function L in such a way that the last equation of the 
system (1.15) would be satisfied, Substituting (1.16) and (1.17) into this equation, we 
obtain a fourth order equation for L 

This equation is somewhat simplified if the Poisson’s ratio is v = const,, and it can be 
written as 

(1.19) 

Let us note that when the medium is homogeneous, (1.18) reduces to the biharmonic 
equation. 

Therefore, the solution of the system (1.1) in the most general case is successfully 
reduced to the solution of two linear differential equations, one of second order, and 

the other of fourth order. Taking into account (1.16) and (1.17). let us write the gen- 

eral solution of the equilibrium equations in displacements for inhomogeneous media 
in the following final form 



810 V.P.Plevako 

Here iV is the function satisfying (1.13). and L satisfies (1.18). From (1.20) we find the 
components of the stress tensor 

The components of the displacement vector and the stress tensor are written in cylindr- 
ical coordinates f, fj, z as follows: 

aa 
u, = --- 

-m 
(1.22) 

1 a adv "p= - - 2,3 3 L -ar 

If the medium is homogeneous, then the general solution of the system (1.1) is repre- 
sented by a set of harmonic N and biharmonic L functions. It can hence be shown 

that the known constructions of the general solutions of the Lame equations obtained by 

P. F. Papkovich, B. G. Galerkin, E. Trefftz and other authors are particular cases of 

that considered above. Thus, for example. we arrive at the Papkovich solution if we 

Here Q),. CD,. @?, (D3 are arbitrary harmonic functions. Substituting (1.54) into (1.20). 

we obtain 
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2G (“x, lL1/, u*) = 4 (l-v) cDl,W - 

which is equivalent to the solution presented in [5l. 

811 

(1.23) 

2. It is possible to go over to the two-dimensional problem of the theory of elasti - 
city of an inhomogeneous medium if it is assumed that N = 0 and L is independent 
of the coordinates Z or y in (1.18) and (1.20). For example., let L = L (5, z). Then 
according to (1.18). the function L must satisfy the equation 

Here v* = Y for the case of deformation occuring in a plane parallel to X& and 
Y* = Y( 1 -I- Y) for the case of the generalized plane stress state. If the Poisson ratio 
is constant, then (2.1) can be written as 

(2.2) 

Expressions to determine the displacements follow from (1.20): 
i 

t&=-z V* (2.3) 

u*=-- t: &+~{&~*~-(l-v*)~]] 
The stresses are determined by means of the formulas 

PL 
a, = - 

PL @L 
&g&2, %f=az(, Gil=-- azt az (2.4) 

If the function A = d2L/&? is introduced, then it is easy to see that it is an analog 
of the Airy stress function. 

3. Let us apply the method of separation of variables to seek the particular solutions 
of (1.13) and (1.18). Let us assume 

Substituting (3.1) into (1.13) am (1.18). we see that the variables separate, if the 
functions $I (2, y) and q2 (s, y) satisfy the Helmholtz equation 

a+/a2+ av/ay2+ av = 0 (3.2) 

where a is an arbitrary numerical parameter. For the functions ql (2) and ‘ps (2) we 
obtain 

(3.3) 

+ 
a *v d@ a4 (1 - VI -- - 
G do” + G ‘p2 = 0 (3.4) 

If the Poisson ratio is v = const, this last equation simplifies somewhat 
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d'w 
- - &7 (d$g + [qw - q’(z) - 2x9;s + 232q(2)2 + dz4 

+ u2 p + 1% [cl2 (z> - Q’ w]} ‘pz = 09 Q’ (z) = 2 4 (z) (3.5) 

The equation of vibrations in a plane (3.2) admiU the following particular solutions (61. 

which can be utilized in many problems of the theory of elasticity: in Cartesian coord- 
inates 

$ = (A + Et) eiau + (C + Dy) eiar 

in cylindrical coordinates 

9 = efi”@ [ AJ,,, (ar) + BY, (ar)] (m=O, 1,2...) 

\p = B [CJo t&r) + DYo tar)] (’ = .)/~1+Y), tg 0 = Y/4 

Here A, B, C, Dare arbitrary constants, I,,, (ar) and Y,,, (ar) are Bessel functions of the 
first and second kind of order m,respectively. 

Therefore, the fundamental difficulty is to find ‘pl and cpa from the differential 

equations (3.3) and (3.4). whose solutions are successfully expressed in terms of known 
functions only in the simplest cases for a given law of variation of the elastic character- 
istics. 

4. Let us examine some of these cases. If the elastic modulus varies exponentially, 
and the Poisson ratio is v = const, then (3.3) and (3.4) transform into linear differential 

equations with constant coefficients, and their solurion is not difficult. Individual prob- 

lems referring to this case have already been considered. Thus, an equation analogous 

to (3.5) has been obtained in [Z] in the investigation of the axisymmetric deformation 
of bodies of revolution for an elastic modulus of the form E (a) = Ep” . If we put 

E (z) = k (z + h)b in (3.3). then g (z) = b / (Z + h) and we arrive at an equation equi- 

valent to that examined in fl]. A power-law variation in the modulus has been consid- 

ered in the plane problem of the theory of elasticity of an inhomogeneous medium in 

[4], where an equation analogous to (3.6) has been investigated for q (2) = b / (2 -I- h). 
However, not all of its solutions were examined therein, hence we consider this case in 

more detail. 
PuttingE (i) = k (Z + k)b in (3.5). and making the change of variable zl = z f h. we 

obtain 

--24z m+ 1 
d%cpa 2azb dqa -- 

ZI dzl 
14.1) 

According to [4], the solution of this equation is 

‘pz = zzs @+I) lCI~ A, p (2azl) + CMh, p (2~21) + C&f_,,., (2azl) 4 C4W_,, p @=W 

1 =1/s l/(b+i)[i-vb/(i-v)], p=--1--[ab (4.2) 

Here MA,, @a%), wx,,(2W) are Whittaker functions, and the CL, CZ, CS* c4 are arbitrary 
constantJ. However, if the Poisson ratio Y is connected with the exponent b by the de- 
pendence v = i/ (b + 1) or b= -1, then h = 0 and (4.2) yields only two independent 

solutions of (4.1). To seek the general solution in this case. let us put u= azl in (4.1). 
and let us write it as 
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C -$q 9 --b _&qi+ L$q(!$_!q ~_q+o (4.3) 

The problem therefore reduces to seeking the function of the inhomogeneous equation 

(4.4) 

where qi is the general solution of the equation 
d29)” 
drl’+ +?F-(i+!$?j ‘p+-_o 

Solving (4.5) and (4.4). we find 

w = zlpl (CrZ, (azr) + C2Kn 6-w) + 

(4.5) 

;Cz[Zn(azl)s Kn2(az1)dz1-K,(azl) j Z,,(cm)K,,(az~)dzl]i- 

-l-GIIn(azx)f I, (azl) K, (az3) dzi - K, (a~) s 
1R (azr) dn 1 1, n = l/o (b + 2) (4.6) 

Here In (a& Kn (az,) are Bessel functions of imaginary argument, of the first and 
second kind of order R , respectively. If the quantity 1/Z (b + 2) equals half of an odd 
number, then the Bessel functions, as is known, reduce to combinations of elementary 
functions. In this case it is easy to transform (4.6) successfully into tabulated functions, 
SO that it is not difficult to obtain numerical results, For example, for b = -_1 the sol- 
ution (4.6) can be represented as 

cpz = AeaZ1 + BemaZ~ -I- C [e a*2 In zr - tafl Ei (I?&] + 

+ D [e”z’ In z: - eaX1 Ei (- 2CW)] 

Here Ei (2ozJ and Ei (-2~~2,) are exponential integral functions. 

(4.7) 
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